<div xmlns="http://www.w3.org/1999/xhtml"> <h3>Reference List (Bibliographic Reference List)</h3> </div> |
QName | Type | Fixed | Default | Use | Inheritable | Annotation | |
---|---|---|---|---|---|---|---|
content-type | xsd:string | optional | |||||
id | xsd:ID | optional | |||||
specific-use | xsd:string | optional | |||||
xml:base | xs:anyURI | optional |
|
||||
xml:lang | union of(xs:language, restriction of xs:string) | optional |
|
Element Groups | back.class, ref-list.class, sec-back.class |
<xsd:element name="ref-list"> <xsd:annotation> <xsd:documentation> <div xmlns="http://www.w3.org/1999/xhtml"> <h3>Reference List (Bibliographic Reference List)</h3> </div> </xsd:documentation> </xsd:annotation> <xsd:complexType> <xsd:group ref="ref-list-model"/> <xsd:attribute name="content-type" use="optional" type="xsd:string"/> <xsd:attribute name="id" use="optional" type="xsd:ID"/> <xsd:attribute name="specific-use" use="optional" type="xsd:string"/> <xsd:attribute ref="xml:base" use="optional"/> <xsd:attribute ref="xml:lang" use="optional"/> </xsd:complexType> </xsd:element> |
Acknowledgments |
This work was supported by the National Science Foundation of China (41421001), Science & Technology Basic Research Program of China (2013FY114600 and 2011FY110400), Construction Project of the China Knowledge Center for Engineering Sciences and Technology (CKCEST-2017-3-1), and Cultivate Project of the Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Science (No. TSYJS03). The authors would like to express their gratitude for data support from the Data Sharing Platform of Earth System Science, National Science & Technology Infrastructure of China. |
Author Contributions |
Juanle Wang was responsible for the research design and analysis and designed and reviewed the manuscript. Junxiang Zhu drafted the manuscript and was responsible for data preparation, image interpretation, experiment, and analysis. Xuehua Han was responsible for the data processing and archiving. All authors contributed to editing and reviewing the manuscript. |
Conflicts of Interest |
The authors declare no conflict of interest. |
References |
1. |
Saturno |
W. |
Sever |
T.L. |
Irwin |
D.E. |
Howell |
B.F. |
Garrison |
T.G. |
Putting us on the map: Remote sensing investigation of the ancient maya landscape |
Remote Sensing in Archaeology |
Springer |
Berlin, Germany |
2007 |
137 |
160 |
2. |
Shen |
F. |
Kuang |
D. |
Remote sensing investigation and survey of qinghai lake in the past 25 years |
J. Lake Sci. |
2002 |
15 |
289 |
296 |
3. |
Sankey |
J.B. |
Draut |
A.E. |
Gully annealing by aeolian sediment: Field and remote-sensing investigation of aeolian-hillslope-fluvial interactions, colorado river corridor, arizona, USA |
Geomorphology |
2014 |
220 |
68 |
80 |
10.1016/j.geomorph.2014.05.028 |
4. |
Kim |
J. |
Grunwald |
S. |
Osborne |
T. |
Robbins |
R. |
Yamataki |
H. |
Rivero |
R. |
Spatial resolution effects of remote sensing images on digital soil models in aquatic ecosystems |
Computing Ethics: A Multicultural Approach |
CRC Press |
Boca Raton, FL, USA |
2016 |
121 |
5. |
De Klerk |
H.M. |
Gilbertson |
J. |
Lück-Vogel |
M. |
Kemp |
J. |
Munch |
Z. |
Using remote sensing in support of environmental management: A framework for selecting products, algorithms and methods |
J. Environ. Manag. |
2016 |
182 |
564 |
573 |
10.1016/j.jenvman.2016.07.073 |
27543751 |
6. |
Qiu |
B. |
Sui |
Y. |
Chen |
C. |
Tu |
X. |
Identification of optimal spatial resolution with local variance, semivariogram and wavelet method |
Proceedings of the Accuracy 2010 Symposium |
Leicester, UK |
20–23 July 2010 |
353 |
356 |
7. |
Woodcock |
C.E. |
Strahler |
A.H. |
Jupp |
D.L.B. |
The use of variograms in remote sensing: I. Scene models and simulated images |
Remote Sens. Environ. |
1988 |
25 |
323 |
348 |
10.1016/0034-4257(88)90108-3 |
8. |
Ming |
D. |
Ci |
T. |
Cai |
H. |
Li |
L. |
Qiao |
C. |
Du |
J. |
Semivariogram-based spatial bandwidth selection for remote sensing image segmentation with mean-shift algorithm |
IEEE Geosci. Remote Sens. Lett. |
2012 |
9 |
813 |
817 |
10.1109/LGRS.2011.2182604 |
9. |
Treitz |
P. |
Howarth |
P. |
High spatial resolution remote sensing data for forest ecosystem classification: An examination of spatial scale |
Remote Sens. Environ. |
2000 |
72 |
268 |
289 |
10.1016/S0034-4257(99)00098-X |
10. |
Woodcock |
C.E. |
Strahler |
A.H. |
Jupp |
D.L.B. |
The use of variograms in remote sensing: II. Real digital images |
Remote Sens. Environ. |
1988 |
25 |
349 |
379 |
10.1016/0034-4257(88)90109-5 |
11. |
Kayitakire |
F. |
Hamel |
C. |
Defourny |
P. |
Retrieving forest structure variables based on image texture analysis and ikonos-2 imagery |
Remote Sens. Environ. |
2006 |
102 |
390 |
401 |
10.1016/j.rse.2006.02.022 |
12. |
Levesque |
J. |
King |
D.J. |
Airborne digital camera image semivariance for evaluation of forest structural damage at an acid mine site |
Remote Sens. Environ. |
1999 |
68 |
112 |
124 |
10.1016/S0034-4257(98)00104-7 |
13. |
Wolter |
P.T. |
Townsend |
P.A. |
Sturtevant |
B.R. |
Estimation of forest structural parameters using 5 and 10 meter spot-5 satellite data |
Remote Sens. Environ. |
2009 |
113 |
2019 |
2036 |
10.1016/j.rse.2009.05.009 |
14. |
Song |
C. |
Estimating tree crown size with spatial information of high resolution optical remotely sensed imagery |
Int. J. Remote Sens. |
2007 |
28 |
3305 |
3322 |
10.1080/01431160600993413 |
15. |
Liu |
Y. |
Chen |
D. |
Zheng |
C. |
Estimation on forest stand crown of the picea schrenkiana based on high spatial resolution imagery |
J. Xinjiang Agric. Univ. |
2013 |
36 |
153 |
157 |
16. |
Guardiola-Albert |
C. |
Ballesteros-Cánovas |
J. |
Stoffel |
M. |
Díez-Herrero |
A. |
How to improve dendrogeomorphic sampling: Variogram analyses of wood density using X-ray computed tomography |
Tree Ring Res. |
2015 |
71 |
25 |
36 |
10.3959/1536-1098-71.1.25 |
17. |
Zhu |
J. |
Wang |
J. |
An appropriate scale extraction method for complicated scene model based on semivariogram analysis |
Geogr. Geo-Inf. Sci. |
2015 |
31 |
33 |
37 |
18. |
Webster |
R. |
Oliver |
M.A. |
How large a sample is needed to estimate the regional variogram adequately? |
Geostatistics Tróia’92 |
Springer |
Berlin, Germany |
1993 |
155 |
166 |
19. |
Han |
X. |
Yang |
G. |
Liu |
Z. |
Vegetation changes of loess plateau and ansai county and the responding characteristics of climate |
Acta Bot. Boreali-Occident. Sin. |
2009 |
29 |
593 |
600 |
20. |
Zhou |
D. |
Zhao |
S. |
Zhu |
C. |
Impacts of the sloping land conversion program on the land use/cover change in the loess plateau: A case study in Ansai county of Shaanxi province, China |
J. Nat. Resour. |
2011 |
26 |
1866 |
1878 |
21. |
Maxwell |
A. |
Strager |
M. |
Warner |
T. |
Zégre |
N. |
Yuill |
C. |
Comparison of naip orthophotography and rapideye satellite imagery for mapping of mining and mine reclamation |
GISci. Remote Sens. |
2014 |
51 |
301 |
320 |
10.1080/15481603.2014.912874 |
22. |
Atkinson |
P.M. |
Curran |
P.J. |
Choosing an appropriate spatial resolution for remote sensing investigations |
Photogramm. Eng. Remote Sens. |
1997 |
63 |
1345 |
1351 |
23. |
Jupp |
D.L.B. |
Strahler |
A.H. |
Woodcock |
C.E. |
Autocorrelation and regularization in digital images. I. Basic theory |
IEEE Trans. Geosci. Remote Sens. |
1988 |
26 |
463 |
473 |
10.1109/36.3050 |
24. |
Miranda |
F. |
Fonseca |
L. |
Carr |
J. |
Semivariogram textural classification of jers-1 (fuyo-1) sar data obtained over a flooded area of the amazon rainforest |
Int. J. Remote Sens. |
1998 |
19 |
549 |
556 |
10.1080/014311698216170 |
25. |
Atkinson |
P.M. |
Curran |
P.J. |
Defining an optimal size of support for remote sensing investigations |
IEEE Trans. Geosci. Remote Sens. |
1995 |
33 |
768 |
776 |
10.1109/36.387592 |
26. |
Baatz |
M. |
Multiresolution segmentation: An optimization approach for high quality multi-scale image segmentation |
Angew. Geogr. Informationsverarbeitung |
2000 |
12 |
12 |
23 |
27. |
Robert |
C. |
Casella |
G. |
Monte Carlo Statistical Methods |
Springer Science & Business Media |
Berlin, Germany |
2013 |
28. |
Choy |
R. |
Edelman |
A. |
Parallel matlab: Doing it right |
Proc. IEEE |
2005 |
93 |
331 |
341 |
10.1109/JPROC.2004.840490 |
29. |
Sharma |
G. |
Martin |
J. |
Matlab |
® |
: A language for parallel computing |
Int. J. Parallel Program. |
2009 |
37 |
3 |
36 |
10.1007/s10766-008-0082-5 |
30. |
Wu |
Z. |
Dai |
E. |
Ge |
Q. |
Xi |
W. |
Wang |
X. |
Modelling the integrated effects of land use and climate change scenarios on forest ecosystem aboveground biomass, a case study in taihe county of china |
J. Geogr. Sci. |
2017 |
27 |
205 |
222 |
10.1007/s11442-017-1372-x |
31. |
Wang |
P. |
Volving Law of Land Use and Driving Force in Jiangxi Province |
Master’s Thesis |
Jiangxi Agriculture University |
Nanchang, China |
2013 |
32. |
He |
Z.-W. |
Yang |
Z. |
Luo |
J. |
Analysis on information entropy of land use structure in changdu area of Tibet |
Resour. Environ. Yangtze Basin |
2007 |
16 |
192 |
195 |
33. |
Wen |
Z. |
Zhang |
S. |
Bai |
J. |
Ding |
C. |
Zhang |
C. |
Agricultural landscape spatial heterogeneity analysis and optimal scale selection: An example applied to sanjiang plain |
Acta Geogr. Sin. |
2012 |
67 |
346 |
356 |
34. |
Yang |
X. |
Wang |
X. |
Hu |
T. |
Cao |
Y. |
Appropriate scale in typical objects feature extraction |
J. Mt. Sci. |
2012 |
30 |
607 |
615 |
35. |
Satellite Imaging Corporation |
Satellite Sensors |
Available online: |
https://www.satimagingcorp.com/satellite-sensors/ |
(accessed on 28 December 2017) |
Figures and Tables |
Figure 1 |
Locations of study sites. |
< graphic xmlns = "" xlink:href = "ijgi-07-00013-g001.tif" /> |
Figure 2 |
An ideal curve of a semivariogram with a range of 10 and a sill of 30. |
Figure 3 |
Workflow of this study. |
Figure 4 |
Semivariograms for: built area ( |
a |
); farmland ( |
b |
); forest ( |
c |
); grassland ( |
d |
); and water ( |
e |
), via sub-area method (SAM). |
Figure 5 |
Semivariograms for: built area ( |
a |
); farmland ( |
b |
); forest ( |
c |
); grassland ( |
d |
); water ( |
e |
); and overall ( |
f |
) based on direct-analysis method (DAM). |
Figure 6 |
Probability distributions for the built area ( |
red |
), farmland ( |
green |
), forest ( |
blue |
), grassland ( |
black |
), and water ( |
yellow |
). |
Figure 7 |
Relationship between the group number ( |
GN |
) and fitting R |
2 |
for Ansai’s forest ( |
a |
), grassland ( |
b |
), farmland ( |
c |
), Taihe’s forest ( |
d |
), grassland ( |
e |
), farmland ( |
f |
), and Changdu’s forest ( |
g |
), grassland ( |
h |
), farmland ( |
i |
); the |
x |
-axis is |
GN |
, and the |
y |
-axis is R |
2 |
. |
Figure 8 |
Relationship between sample size ( |
SS |
) and R |
2 |
for Ansai’s forest ( |
a |
), grassland ( |
b |
), farmland ( |
c |
), Taihe’s forest ( |
d |
), grassland ( |
e |
), farmland ( |
f |
), and Changdu’s forest ( |
g |
), grassland ( |
h |
), farmland ( |
i |
); the |
x |
-axis is |
SS |
and the |
y |
-axis is R |
2 |
. |
Figure 9 |
Relationship between the simulation times and standard deviation of average fitting ranges for forest ( |
blue |
), grassland ( |
green |
), and farmland ( |
red |
) in Ansai County. |
Figure 10 |
Land cover maps for: ( |
a |
) Ansai County; ( |
b |
) Taihe County; and ( |
c |
) Changdu County. |
Figure 11 |
Probability distributions for the ranges for: Ansai County ( |
a |
); Taihe County ( |
b |
); and Changdu County ( |
c |
). |
Figure 12 |
Appropriate scales for forest, grassland, and farmland at the study sites. |
Figure 13 |
Proportion of the area of the ground features in: ( |
a |
) Ansai; ( |
b |
) Taihe; and ( |
c |
) Changdu. |
ijgi-07-00013-t001_Table 1 |
Table 1 |
Image bands and sampling cell size. |
Items |
Detail |
Blue |
440–510 nm |
Green |
520–590 nm |
Red |
630–685 nm |
Red Edge |
690–730 nm |
Infrared |
760–850 nm |
Sampling cell |
6.5 m |
ijgi-07-00013-t002_Table 2 |
Table 2 |
Image number and capture date. |
Region |
Number |
Capture Date |
Ansai County |
4 |
3 |
1 |
September 2010, 1 October 2010 |
Taihe County |
4 |
1 November 2011, 2 September 2012, 1 October 2010 |
Changdu County |
5 |
2 September 2010 |
1 |
The values in parentheses indicate the number of images captured on that date. |
ijgi-07-00013-t003_Table 3 |
Table 3 |
Image interpretation, indexes used and values. |
County |
Visual Interpretation |
Object-Based Automatic Interpretation |
Ansai County |
Farmland, built area, and river |
Forest (NDVI > 0.3), grassland (NDVI > 0.05), lake (NDWI > 0.3), barren (Brightness > 5600), others (all the rest) |
Taihe County |
Built area and river |
Lake (NDWI > 0.25), farmland (NDSI > −0.17), forest (NDVI > 0.25 and Brightness < 4260), barren (Brightness > 5500), grassland (NDVI > 0), other (all the rest) |
Changdu County |
Farmland, built area and water |
Forest (DN < 1950), grassland (NDVI > 0.07), others (all the rest) |
ijgi-07-00013-t004_Table 4 |
Table 4 |
R |
2 |
values for the exponential and spherical models. |
< th rowspan = "2" align = "center" valign = "middle" style = "border-top:solid thin;border-bottom:solid thin" /> |
Ansai County |
Taihe County |
Changdu County |
Forest |
Grass |
Farmland |
Forest |
Grass |
Farmland |
Forest |
Grass |
Farmland |
Exponential |
0.93 |
0.94 |
0.79 |
0.92 |
0.90 |
0.81 |
0.87 |
0.56 |
0.89 |
Spherical |
0.56 |
0.61 |
0.49 |
0.36 |
0.38 |
0.50 |
0.38 |
0.27 |
0.39 |
ijgi-07-00013-t005_Table 5 |
Table 5 |
Standard deviation of the ranges. |
< th rowspan = "2" align = "center" valign = "middle" style = "border-top:solid thin;border-bottom:solid thin" /> |
Ansai County |
Taihe County |
Changdu County |
Forest |
Grassland |
Farmland |
Forest |
Grassland |
Farmland |
Forest |
Grassland |
Farmland |
Before (B) |
24.5 |
29.8 |
92.9 |
142.4 |
110.5 |
167.9 |
81.9 |
418.2 |
127.5 |
After (A) |
10.9 |
13.4 |
5.8 |
137.9 |
74.9 |
22.4 |
62.4 |
7053.7 |
34.3 |
A−B |
−13.6 |
−16.4 |
−87.1 |
−4.5 |
−35.6 |
−145.5 |
−19.5 |
6635.5 |
−93.2 |
Percentage |
55.5% |
55.0% |
93.8% |
3.2% |
32.2% |
86.7% |
23.8% |
------ |
73.1% |
ijgi-07-00013-t006_Table 6 |
Table 6 |
Accuracy assessment of the classification results for Ansai, Taihe, and Changdu. |
< th align = "center" valign = "middle" style = "border-top:solid thin;border-bottom:solid thin" /> |
Overall Accuracy |
Kappa Coefficient |
Ansai County |
0.89 |
0.87 |
Taihe County |
0.88 |
0.86 |
Changdu County |
0.89 |
0.87 |
ijgi-07-00013-t007_Table 7 |
Table 7 |
Applicable satellite imagery for general ground features in pilot areas. |
< th align = "center" valign = "middle" style = "border-top:solid thin;border-bottom:solid thin" /> |
Ground Features |
Average Size (m) |
Maximum Resolution (m) |
Applicable Satellite Imagery |
Ansai County |
Forest |
45 |
15 |
e.g., Landsat 8 (15 m) |
Grassland |
39 |
13 |
e.g., Sentinel-2A (10 m) |
Farmland |
63 |
21 |
e.g., CBERS-2 (20 m) |
Taihe County |
Forest |
433 |
144 |
e.g., CBERS-2 (20 m) |
Grassland |
217 |
72 |
e.g., CBERS-2 (20 m) |
Farmland |
58 |
19 |
e.g., Landsat 8 (15 m) |
Changdu County |
Forest |
108 |
36 |
e.g., CBERS-2 (20 m) |
Grassland |
1308 |
436 |
e.g., CBERS-2 (20 m) |
Farmland |
98 |
32 |
e.g., CBERS-2 (20 m) |