ref-list

<div xmlns="http://www.w3.org/1999/xhtml">
  <h3>Reference List (Bibliographic Reference List)</h3>
</div>

Element Information

Model

Attributes

QName Type Fixed Default Use Inheritable Annotation
content-type xsd:string optional
id xsd:ID optional
specific-use xsd:string optional
xml:base xs:anyURI optional
<div>
  <h3>base (as an attribute name)</h3>
  <p>denotes an attribute whose value provides a URI to be used as the base for interpreting any relative URIs in the scope of the element on which it appears; its value is inherited. This name is reserved by virtue of its definition in the XML Base specification.</p>
  <p>See
    <a href="http://www.w3.org/TR/xmlbase/">http://www.w3.org/TR/xmlbase/</a>for information about this attribute.</p>
</div>
xml:lang union of(xs:language, restriction of xs:string) optional
<div>
  <h3>lang (as an attribute name)</h3>
  <p>denotes an attribute whose value is a language code for the natural language of the content of any element; its value is inherited. This name is reserved by virtue of its definition in the XML specification.</p>
</div>
<div>
  <h4>Notes</h4>
  <p>Attempting to install the relevant ISO 2- and 3-letter codes as the enumerated possible values is probably never going to be a realistic possibility.</p>
  <p>See BCP 47 at
    <a href="http://www.rfc-editor.org/rfc/bcp/bcp47.txt">http://www.rfc-editor.org/rfc/bcp/bcp47.txt</a>and the IANA language subtag registry at
    <a href="http://www.iana.org/assignments/language-subtag-registry">http://www.iana.org/assignments/language-subtag-registry</a>for further information.</p>
  <p>The union allows for the 'un-declaration' of xml:lang with the empty string.</p>
</div>

Used By

Source

<xsd:element name="ref-list">
  <xsd:annotation>
    <xsd:documentation>
      <div xmlns="http://www.w3.org/1999/xhtml">
        <h3>Reference List (Bibliographic Reference List)</h3>
      </div>
    </xsd:documentation>
  </xsd:annotation>
  <xsd:complexType>
    <xsd:group ref="ref-list-model"/>
    <xsd:attribute name="content-type" use="optional" type="xsd:string"/>
    <xsd:attribute name="id" use="optional" type="xsd:ID"/>
    <xsd:attribute name="specific-use" use="optional" type="xsd:string"/>
    <xsd:attribute ref="xml:base" use="optional"/>
    <xsd:attribute ref="xml:lang" use="optional"/>
  </xsd:complexType>
</xsd:element>

Sample

Acknowledgments

This work was supported by the National Science Foundation of China (41421001), Science & Technology Basic Research Program of China (2013FY114600 and 2011FY110400), Construction Project of the China Knowledge Center for Engineering Sciences and Technology (CKCEST-2017-3-1), and Cultivate Project of the Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Science (No. TSYJS03). The authors would like to express their gratitude for data support from the Data Sharing Platform of Earth System Science, National Science & Technology Infrastructure of China.

Author Contributions

Juanle Wang was responsible for the research design and analysis and designed and reviewed the manuscript. Junxiang Zhu drafted the manuscript and was responsible for data preparation, image interpretation, experiment, and analysis. Xuehua Han was responsible for the data processing and archiving. All authors contributed to editing and reviewing the manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

References

1.

Saturno

W.

Sever

T.L.

Irwin

D.E.

Howell

B.F.

Garrison

T.G.

Putting us on the map: Remote sensing investigation of the ancient maya landscape

Remote Sensing in Archaeology

Springer

Berlin, Germany

2007

137

160

2.

Shen

F.

Kuang

D.

Remote sensing investigation and survey of qinghai lake in the past 25 years

J. Lake Sci.

2002

15

289

296

3.

Sankey

J.B.

Draut

A.E.

Gully annealing by aeolian sediment: Field and remote-sensing investigation of aeolian-hillslope-fluvial interactions, colorado river corridor, arizona, USA

Geomorphology

2014

220

68

80

10.1016/j.geomorph.2014.05.028

4.

Kim

J.

Grunwald

S.

Osborne

T.

Robbins

R.

Yamataki

H.

Rivero

R.

Spatial resolution effects of remote sensing images on digital soil models in aquatic ecosystems

Computing Ethics: A Multicultural Approach

CRC Press

Boca Raton, FL, USA

2016

121

5.

De Klerk

H.M.

Gilbertson

J.

Lück-Vogel

M.

Kemp

J.

Munch

Z.

Using remote sensing in support of environmental management: A framework for selecting products, algorithms and methods

J. Environ. Manag.

2016

182

564

573

10.1016/j.jenvman.2016.07.073

27543751

6.

Qiu

B.

Sui

Y.

Chen

C.

Tu

X.

Identification of optimal spatial resolution with local variance, semivariogram and wavelet method

Proceedings of the Accuracy 2010 Symposium

Leicester, UK

20–23 July 2010

353

356

7.

Woodcock

C.E.

Strahler

A.H.

Jupp

D.L.B.

The use of variograms in remote sensing: I. Scene models and simulated images

Remote Sens. Environ.

1988

25

323

348

10.1016/0034-4257(88)90108-3

8.

Ming

D.

Ci

T.

Cai

H.

Li

L.

Qiao

C.

Du

J.

Semivariogram-based spatial bandwidth selection for remote sensing image segmentation with mean-shift algorithm

IEEE Geosci. Remote Sens. Lett.

2012

9

813

817

10.1109/LGRS.2011.2182604

9.

Treitz

P.

Howarth

P.

High spatial resolution remote sensing data for forest ecosystem classification: An examination of spatial scale

Remote Sens. Environ.

2000

72

268

289

10.1016/S0034-4257(99)00098-X

10.

Woodcock

C.E.

Strahler

A.H.

Jupp

D.L.B.

The use of variograms in remote sensing: II. Real digital images

Remote Sens. Environ.

1988

25

349

379

10.1016/0034-4257(88)90109-5

11.

Kayitakire

F.

Hamel

C.

Defourny

P.

Retrieving forest structure variables based on image texture analysis and ikonos-2 imagery

Remote Sens. Environ.

2006

102

390

401

10.1016/j.rse.2006.02.022

12.

Levesque

J.

King

D.J.

Airborne digital camera image semivariance for evaluation of forest structural damage at an acid mine site

Remote Sens. Environ.

1999

68

112

124

10.1016/S0034-4257(98)00104-7

13.

Wolter

P.T.

Townsend

P.A.

Sturtevant

B.R.

Estimation of forest structural parameters using 5 and 10 meter spot-5 satellite data

Remote Sens. Environ.

2009

113

2019

2036

10.1016/j.rse.2009.05.009

14.

Song

C.

Estimating tree crown size with spatial information of high resolution optical remotely sensed imagery

Int. J. Remote Sens.

2007

28

3305

3322

10.1080/01431160600993413

15.

Liu

Y.

Chen

D.

Zheng

C.

Estimation on forest stand crown of the picea schrenkiana based on high spatial resolution imagery

J. Xinjiang Agric. Univ.

2013

36

153

157

16.

Guardiola-Albert

C.

Ballesteros-Cánovas

J.

Stoffel

M.

Díez-Herrero

A.

How to improve dendrogeomorphic sampling: Variogram analyses of wood density using X-ray computed tomography

Tree Ring Res.

2015

71

25

36

10.3959/1536-1098-71.1.25

17.

Zhu

J.

Wang

J.

An appropriate scale extraction method for complicated scene model based on semivariogram analysis

Geogr. Geo-Inf. Sci.

2015

31

33

37

18.

Webster

R.

Oliver

M.A.

How large a sample is needed to estimate the regional variogram adequately?

Geostatistics Tróia’92

Springer

Berlin, Germany

1993

155

166

19.

Han

X.

Yang

G.

Liu

Z.

Vegetation changes of loess plateau and ansai county and the responding characteristics of climate

Acta Bot. Boreali-Occident. Sin.

2009

29

593

600

20.

Zhou

D.

Zhao

S.

Zhu

C.

Impacts of the sloping land conversion program on the land use/cover change in the loess plateau: A case study in Ansai county of Shaanxi province, China

J. Nat. Resour.

2011

26

1866

1878

21.

Maxwell

A.

Strager

M.

Warner

T.

Zégre

N.

Yuill

C.

Comparison of naip orthophotography and rapideye satellite imagery for mapping of mining and mine reclamation

GISci. Remote Sens.

2014

51

301

320

10.1080/15481603.2014.912874

22.

Atkinson

P.M.

Curran

P.J.

Choosing an appropriate spatial resolution for remote sensing investigations

Photogramm. Eng. Remote Sens.

1997

63

1345

1351

23.

Jupp

D.L.B.

Strahler

A.H.

Woodcock

C.E.

Autocorrelation and regularization in digital images. I. Basic theory

IEEE Trans. Geosci. Remote Sens.

1988

26

463

473

10.1109/36.3050

24.

Miranda

F.

Fonseca

L.

Carr

J.

Semivariogram textural classification of jers-1 (fuyo-1) sar data obtained over a flooded area of the amazon rainforest

Int. J. Remote Sens.

1998

19

549

556

10.1080/014311698216170

25.

Atkinson

P.M.

Curran

P.J.

Defining an optimal size of support for remote sensing investigations

IEEE Trans. Geosci. Remote Sens.

1995

33

768

776

10.1109/36.387592

26.

Baatz

M.

Multiresolution segmentation: An optimization approach for high quality multi-scale image segmentation

Angew. Geogr. Informationsverarbeitung

2000

12

12

23

27.

Robert

C.

Casella

G.

Monte Carlo Statistical Methods

Springer Science & Business Media

Berlin, Germany

2013

28.

Choy

R.

Edelman

A.

Parallel matlab: Doing it right

Proc. IEEE

2005

93

331

341

10.1109/JPROC.2004.840490

29.

Sharma

G.

Martin

J.

Matlab

®

: A language for parallel computing

Int. J. Parallel Program.

2009

37

3

36

10.1007/s10766-008-0082-5

30.

Wu

Z.

Dai

E.

Ge

Q.

Xi

W.

Wang

X.

Modelling the integrated effects of land use and climate change scenarios on forest ecosystem aboveground biomass, a case study in taihe county of china

J. Geogr. Sci.

2017

27

205

222

10.1007/s11442-017-1372-x

31.

Wang

P.

Volving Law of Land Use and Driving Force in Jiangxi Province

Master’s Thesis

Jiangxi Agriculture University

Nanchang, China

2013

32.

He

Z.-W.

Yang

Z.

Luo

J.

Analysis on information entropy of land use structure in changdu area of Tibet

Resour. Environ. Yangtze Basin

2007

16

192

195

33.

Wen

Z.

Zhang

S.

Bai

J.

Ding

C.

Zhang

C.

Agricultural landscape spatial heterogeneity analysis and optimal scale selection: An example applied to sanjiang plain

Acta Geogr. Sin.

2012

67

346

356

34.

Yang

X.

Wang

X.

Hu

T.

Cao

Y.

Appropriate scale in typical objects feature extraction

J. Mt. Sci.

2012

30

607

615

35.

Satellite Imaging Corporation

Satellite Sensors

Available online:

https://www.satimagingcorp.com/satellite-sensors/

(accessed on 28 December 2017)

Figures and Tables

Figure 1

Locations of study sites.

< graphic xmlns = "" xlink:href = "ijgi-07-00013-g001.tif" />

Figure 2

An ideal curve of a semivariogram with a range of 10 and a sill of 30.

< graphic xlink:href = "ijgi-07-00013-g002.tif" />

Figure 3

Workflow of this study.

< graphic xlink:href = "ijgi-07-00013-g003.tif" />

Figure 4

Semivariograms for: built area (

a

); farmland (

b

); forest (

c

); grassland (

d

); and water (

e

), via sub-area method (SAM).

< graphic xlink:href = "ijgi-07-00013-g004.tif" />

Figure 5

Semivariograms for: built area (

a

); farmland (

b

); forest (

c

); grassland (

d

); water (

e

); and overall (

f

) based on direct-analysis method (DAM).

< graphic xlink:href = "ijgi-07-00013-g005.tif" />

Figure 6

Probability distributions for the built area (

red

), farmland (

green

), forest (

blue

), grassland (

black

), and water (

yellow

).

< graphic xlink:href = "ijgi-07-00013-g006.tif" />

Figure 7

Relationship between the group number (

GN

) and fitting R

2

for Ansai’s forest (

a

), grassland (

b

), farmland (

c

), Taihe’s forest (

d

), grassland (

e

), farmland (

f

), and Changdu’s forest (

g

), grassland (

h

), farmland (

i

); the

x

-axis is

GN

, and the

y

-axis is R

2

.

< graphic xlink:href = "ijgi-07-00013-g007.tif" />

Figure 8

Relationship between sample size (

SS

) and R

2

for Ansai’s forest (

a

), grassland (

b

), farmland (

c

), Taihe’s forest (

d

), grassland (

e

), farmland (

f

), and Changdu’s forest (

g

), grassland (

h

), farmland (

i

); the

x

-axis is

SS

and the

y

-axis is R

2

.

< graphic xlink:href = "ijgi-07-00013-g008.tif" />

Figure 9

Relationship between the simulation times and standard deviation of average fitting ranges for forest (

blue

), grassland (

green

), and farmland (

red

) in Ansai County.

< graphic xlink:href = "ijgi-07-00013-g009.tif" />

Figure 10

Land cover maps for: (

a

) Ansai County; (

b

) Taihe County; and (

c

) Changdu County.

< graphic xlink:href = "ijgi-07-00013-g010a.tif" />

< graphic xlink:href = "ijgi-07-00013-g010b.tif" />

Figure 11

Probability distributions for the ranges for: Ansai County (

a

); Taihe County (

b

); and Changdu County (

c

).

< graphic xlink:href = "ijgi-07-00013-g011.tif" />

Figure 12

Appropriate scales for forest, grassland, and farmland at the study sites.

< graphic xlink:href = "ijgi-07-00013-g012.tif" />

Figure 13

Proportion of the area of the ground features in: (

a

) Ansai; (

b

) Taihe; and (

c

) Changdu.

< graphic xlink:href = "ijgi-07-00013-g013.tif" />

ijgi-07-00013-t001_Table 1

Table 1

Image bands and sampling cell size.

Items

Detail

Blue

440–510 nm

Green

520–590 nm

Red

630–685 nm

Red Edge

690–730 nm

Infrared

760–850 nm

Sampling cell

6.5 m

ijgi-07-00013-t002_Table 2

Table 2

Image number and capture date.

Region

Number

Capture Date

Ansai County

4

3

1

September 2010, 1 October 2010

Taihe County

4

1 November 2011, 2 September 2012, 1 October 2010

Changdu County

5

2 September 2010

1

The values in parentheses indicate the number of images captured on that date.

ijgi-07-00013-t003_Table 3

Table 3

Image interpretation, indexes used and values.

County

Visual Interpretation

Object-Based Automatic Interpretation

Ansai County

Farmland, built area, and river

Forest (NDVI > 0.3), grassland (NDVI > 0.05), lake (NDWI > 0.3), barren (Brightness > 5600), others (all the rest)

Taihe County

Built area and river

Lake (NDWI > 0.25), farmland (NDSI > −0.17), forest (NDVI > 0.25 and Brightness < 4260), barren (Brightness > 5500), grassland (NDVI > 0), other (all the rest)

Changdu County

Farmland, built area and water

Forest (DN < 1950), grassland (NDVI > 0.07), others (all the rest)

ijgi-07-00013-t004_Table 4

Table 4

R

2

values for the exponential and spherical models.

< th rowspan = "2" align = "center" valign = "middle" style = "border-top:solid thin;border-bottom:solid thin" />

Ansai County

Taihe County

Changdu County

Forest

Grass

Farmland

Forest

Grass

Farmland

Forest

Grass

Farmland

Exponential

0.93

0.94

0.79

0.92

0.90

0.81

0.87

0.56

0.89

Spherical

0.56

0.61

0.49

0.36

0.38

0.50

0.38

0.27

0.39

ijgi-07-00013-t005_Table 5

Table 5

Standard deviation of the ranges.

< th rowspan = "2" align = "center" valign = "middle" style = "border-top:solid thin;border-bottom:solid thin" />

Ansai County

Taihe County

Changdu County

Forest

Grassland

Farmland

Forest

Grassland

Farmland

Forest

Grassland

Farmland

Before (B)

24.5

29.8

92.9

142.4

110.5

167.9

81.9

418.2

127.5

After (A)

10.9

13.4

5.8

137.9

74.9

22.4

62.4

7053.7

34.3

A−B

−13.6

−16.4

−87.1

−4.5

−35.6

−145.5

−19.5

6635.5

−93.2

Percentage

55.5%

55.0%

93.8%

3.2%

32.2%

86.7%

23.8%

------

73.1%

ijgi-07-00013-t006_Table 6

Table 6

Accuracy assessment of the classification results for Ansai, Taihe, and Changdu.

< th align = "center" valign = "middle" style = "border-top:solid thin;border-bottom:solid thin" />

Overall Accuracy

Kappa Coefficient

Ansai County

0.89

0.87

Taihe County

0.88

0.86

Changdu County

0.89

0.87

ijgi-07-00013-t007_Table 7

Table 7

Applicable satellite imagery for general ground features in pilot areas.

< th align = "center" valign = "middle" style = "border-top:solid thin;border-bottom:solid thin" />

Ground Features

Average Size (m)

Maximum Resolution (m)

Applicable Satellite Imagery

Ansai County

Forest

45

15

e.g., Landsat 8 (15 m)

Grassland

39

13

e.g., Sentinel-2A (10 m)

Farmland

63

21

e.g., CBERS-2 (20 m)

Taihe County

Forest

433

144

e.g., CBERS-2 (20 m)

Grassland

217

72

e.g., CBERS-2 (20 m)

Farmland

58

19

e.g., Landsat 8 (15 m)

Changdu County

Forest

108

36

e.g., CBERS-2 (20 m)

Grassland

1308

436

e.g., CBERS-2 (20 m)

Farmland

98

32

e.g., CBERS-2 (20 m)