<xsd:complexType name="space_group_symopType">
<xsd:annotation>
<xsd:documentation xml:lang="en">Contains information about the symmetry operations of the space group. Example 1 - The symmetry operations for the space group P21/c. <PDBx:space_group_symopCategory> <PDBx:space_group_symop id="1"> <PDBx:operation_xyz>x,y,z</PDBx:operation_xyz> </PDBx:space_group_symop> <PDBx:space_group_symop id="2"> <PDBx:operation_xyz>-x,-y,-z</PDBx:operation_xyz> </PDBx:space_group_symop> <PDBx:space_group_symop id="3"> <PDBx:operation_xyz>-x,1/2+y,1/2-z</PDBx:operation_xyz> </PDBx:space_group_symop> <PDBx:space_group_symop id="4"> <PDBx:operation_xyz>x,1/2-y,1/2+z</PDBx:operation_xyz> </PDBx:space_group_symop> </PDBx:space_group_symopCategory></xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="space_group_symop" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>
<xsd:all>
<xsd:element name="operation_xyz" minOccurs="0" maxOccurs="1" nillable="true" type="xsd:string">
<xsd:annotation>
<xsd:documentation xml:lang="en">A parsable string giving one of the symmetry operations of the space group in algebraic form. If W is a matrix representation of the rotational part of the symmetry operation defined by the positions and signs of x, y and z, and w is a column of translations defined by the fractions, an equivalent position X' is generated from a given position X by the equation X' = WX + w (Note: X is used to represent bold_italics_x in International Tables for Crystallography Vol. A, Part 5) When a list of symmetry operations is given, it must contain a complete set of coordinate representatives which generates all the operations of the space group by the addition of all primitive translations of the space group. Such representatives are to be found as the coordinates of the general-equivalent position in International Tables for Crystallography Vol. A (2002), to which it is necessary to add any centring translations shown above the general-equivalent position. That is to say, it is necessary to list explicity all the symmetry operations required to generate all the atoms in the unit cell defined by the setting used. glide reflection through the plane (x,1/4,z), with glide vector 1/2 c x,1/2-y,1/2+z</xsd:documentation>
</xsd:annotation>
</xsd:element>
<xsd:element name="sg_id" minOccurs="0" maxOccurs="1" nillable="true" type="xsd:string">
<xsd:annotation>
<xsd:documentation xml:lang="en">This must match a particular value of attribute id in category space_group, allowing the symmetry operation to be identified with a particular space group.</xsd:documentation>
</xsd:annotation>
</xsd:element>
</xsd:all>
<xsd:attribute name="id" use="required" type="xsd:string">
<xsd:annotation>
<xsd:documentation xml:lang="en">An arbitrary identifier that uniquely labels each symmetry operation in the list.</xsd:documentation>
</xsd:annotation>
</xsd:attribute>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType> |