<xsd:complexType name="pdbx_soln_scatterType">
<xsd:annotation>
<xsd:documentation xml:lang="en">Data items in the PDBX_SOLN_SCATTER category record details about a solution scattering experiment Example 1 - based on PDB entry 1HAQ <PDBx:pdbx_soln_scatterCategory> <PDBx:pdbx_soln_scatter entry_id="1HAQ" id="1"> <PDBx:buffer_name>tris</PDBx:buffer_name> <PDBx:concentration_range>0.7 - 14</PDBx:concentration_range> <PDBx:detector_specific xsi:nil="true" /> <PDBx:detector_type>500-channel quadrant</PDBx:detector_type> <PDBx:max_mean_cross_sectional_radii_gyration>1.7</PDBx:max_mean_cross_sectional_radii_gyration> <PDBx:max_mean_cross_sectional_radii_gyration_esd>0.1</PDBx:max_mean_cross_sectional_radii_gyration_esd> <PDBx:mean_guiner_radius>11.1</PDBx:mean_guiner_radius> <PDBx:mean_guiner_radius_esd>0.4</PDBx:mean_guiner_radius_esd> <PDBx:min_mean_cross_sectional_radii_gyration>4.4</PDBx:min_mean_cross_sectional_radii_gyration> <PDBx:min_mean_cross_sectional_radii_gyration_esd>0.2</PDBx:min_mean_cross_sectional_radii_gyration_esd> <PDBx:num_time_frames>10</PDBx:num_time_frames> <PDBx:protein_length>40</PDBx:protein_length> <PDBx:sample_pH xsi:nil="true" /> <PDBx:source_beamline>2.1</PDBx:source_beamline> <PDBx:source_beamline_instrument xsi:nil="true" /> <PDBx:source_class>synchrotron</PDBx:source_class> <PDBx:source_type>SRS BEAMLINE 2.1</PDBx:source_type> <PDBx:temperature>288</PDBx:temperature> <PDBx:type>x-ray</PDBx:type> </PDBx:pdbx_soln_scatter> <PDBx:pdbx_soln_scatter entry_id="1HAQ" id="2"> <PDBx:buffer_name>PBS in 99.9% D2O</PDBx:buffer_name> <PDBx:concentration_range>0.4 - 9.6</PDBx:concentration_range> <PDBx:detector_specific xsi:nil="true" /> <PDBx:detector_type>area</PDBx:detector_type> <PDBx:max_mean_cross_sectional_radii_gyration>1.51</PDBx:max_mean_cross_sectional_radii_gyration> <PDBx:max_mean_cross_sectional_radii_gyration_esd>0.06</PDBx:max_mean_cross_sectional_radii_gyration_esd> <PDBx:mean_guiner_radius>11.3</PDBx:mean_guiner_radius> <PDBx:mean_guiner_radius_esd>0.4</PDBx:mean_guiner_radius_esd> <PDBx:min_mean_cross_sectional_radii_gyration>3.9</PDBx:min_mean_cross_sectional_radii_gyration> <PDBx:min_mean_cross_sectional_radii_gyration_esd>0.2</PDBx:min_mean_cross_sectional_radii_gyration_esd> <PDBx:num_time_frames xsi:nil="true" /> <PDBx:protein_length>37.0 - 39.0</PDBx:protein_length> <PDBx:sample_pH xsi:nil="true" /> <PDBx:source_beamline xsi:nil="true" /> <PDBx:source_beamline_instrument>D11, D22</PDBx:source_beamline_instrument> <PDBx:source_class>neutron source</PDBx:source_class> <PDBx:source_type>ILL</PDBx:source_type> <PDBx:temperature xsi:nil="true" /> <PDBx:type>neutron</PDBx:type> </PDBx:pdbx_soln_scatter> <PDBx:pdbx_soln_scatter entry_id="1HAQ" id="3"> <PDBx:buffer_name>PBS in 99.9% D2O</PDBx:buffer_name> <PDBx:concentration_range>3.7, 6.1</PDBx:concentration_range> <PDBx:detector_specific xsi:nil="true" /> <PDBx:detector_type>AREA (TIME-OF-FLIGHT)</PDBx:detector_type> <PDBx:max_mean_cross_sectional_radii_gyration xsi:nil="true" /> <PDBx:max_mean_cross_sectional_radii_gyration_esd xsi:nil="true" /> <PDBx:mean_guiner_radius>11.7</PDBx:mean_guiner_radius> <PDBx:mean_guiner_radius_esd>0.5</PDBx:mean_guiner_radius_esd> <PDBx:min_mean_cross_sectional_radii_gyration xsi:nil="true" /> <PDBx:min_mean_cross_sectional_radii_gyration_esd xsi:nil="true" /> <PDBx:num_time_frames xsi:nil="true" /> <PDBx:protein_length>40.0</PDBx:protein_length> <PDBx:sample_pH xsi:nil="true" /> <PDBx:source_beamline>Pulsed Neutron</PDBx:source_beamline> <PDBx:source_beamline_instrument>LOQ</PDBx:source_beamline_instrument> <PDBx:source_class>neutron source</PDBx:source_class> <PDBx:source_type>ISIS</PDBx:source_type> <PDBx:temperature xsi:nil="true" /> <PDBx:type>neutron</PDBx:type> </PDBx:pdbx_soln_scatter> </PDBx:pdbx_soln_scatterCategory></xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="pdbx_soln_scatter" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>
<xsd:all>
<xsd:element name="buffer_name" minOccurs="0" maxOccurs="1" nillable="true" type="xsd:string">
<xsd:annotation>
<xsd:documentation xml:lang="en">The name of the buffer used for the sample in the solution scattering experiment. acetic acid</xsd:documentation>
</xsd:annotation>
</xsd:element>
<xsd:element name="concentration_range" minOccurs="0" maxOccurs="1" nillable="true">
<xsd:annotation>
<xsd:documentation xml:lang="en">The concentration range (mg/mL) of the complex in the sample used in the solution scattering experiment to determine the mean radius of structural elongation. 0.7 - 14</xsd:documentation>
</xsd:annotation>
<xsd:complexType>
<xsd:simpleContent>
<xsd:extension base="xsd:string">
<xsd:attribute fixed="mg_per_ml" name="units" type="xsd:string" use="optional"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
</xsd:element>
<xsd:element name="data_analysis_software_list" minOccurs="0" maxOccurs="1" nillable="true" type="xsd:string">
<xsd:annotation>
<xsd:documentation xml:lang="en">A list of the software used in the data analysis SCTPL5 GNOM</xsd:documentation>
</xsd:annotation>
</xsd:element>
<xsd:element name="data_reduction_software_list" minOccurs="0" maxOccurs="1" nillable="true" type="xsd:string">
<xsd:annotation>
<xsd:documentation xml:lang="en">A list of the software used in the data reduction OTOKO</xsd:documentation>
</xsd:annotation>
</xsd:element>
<xsd:element name="detector_specific" minOccurs="0" maxOccurs="1" nillable="true" type="xsd:string">
<xsd:annotation>
<xsd:documentation xml:lang="en">The particular radiation detector. In general this will be a manufacturer, description, model number or some combination of these.</xsd:documentation>
</xsd:annotation>
</xsd:element>
<xsd:element name="detector_type" minOccurs="0" maxOccurs="1" nillable="true" type="xsd:string">
<xsd:annotation>
<xsd:documentation xml:lang="en">The general class of the radiation detector.</xsd:documentation>
</xsd:annotation>
</xsd:element>
<xsd:element name="max_mean_cross_sectional_radii_gyration" minOccurs="0" maxOccurs="1" nillable="true">
<xsd:annotation>
<xsd:documentation xml:lang="en">The maximum mean radius of structural elongation of the sample. In a given solute-solvent contrast, the radius of gyration R_G is a measure of structural elongation if the internal inhomogeneity of scattering densities has no effect. Guiner analysis at low Q give the R_G and the forward scattering at zero angle I(0). lnl(Q) = lnl(0) - R_G^2Q^2/3 where Q = 4(pi)sin(theta/lamda) 2theta = scattering angle lamda = wavelength The above expression is valid in a QR_G range for extended rod-like particles. The relative I(0)/c values ( where c = sample concentration) for sample measurements in a constant buffer for a single sample data session, gives the relative masses of the protein(s) studied when referenced against a standard. see: O.Glatter & O.Kratky, (1982). Editors of "Small angle X-ray Scattering, Academic Press, New York. O.Kratky. (1963). X-ray small angle scattering with substances of biological interest in diluted solutions. Prog. Biophys. Chem., 13, 105-173. G.D.Wignall & F.S.Bates, (1987). The small-angle approximation of X-ray and neutron scatter from rigid rods of non-uniform cross section and finite length. J.Appl. Crystallog., 18, 452-460. If the structure is elongated, the mean radius of gyration of the cross-sectional structure R_XS and the mean cross sectional intensity at zero angle [I(Q).Q]_Q->0 is obtained from ln[I(Q).Q] = ln[l(Q).(Q)]_Q->0 - ((R_XS)^2Q^2)/2</xsd:documentation>
</xsd:annotation>
<xsd:complexType>
<xsd:simpleContent>
<xsd:extension base="xsd:decimal">
<xsd:attribute fixed="nanometres" name="units" type="xsd:string" use="optional"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
</xsd:element>
<xsd:element name="max_mean_cross_sectional_radii_gyration_esd" minOccurs="0" maxOccurs="1" nillable="true">
<xsd:annotation>
<xsd:documentation xml:lang="en">The estimated standard deviation for the minimum mean radius of structural elongation of the sample. In a given solute-solvent contrast, the radius of gyration R_G is a measure of structural elongation if the internal inhomogeneity of scattering densities has no effect. Guiner analysis at low Q give the R_G and the forward scattering at zero angle I(0). lnl(Q) = lnl(0) - R_G^2Q^2/3 where Q = 4(pi)sin(theta/lamda) 2theta = scattering angle lamda = wavelength The above expression is valid in a QR_G range for extended rod-like particles. The relative I(0)/c values ( where c = sample concentration) for sample measurements in a constant buffer for a single sample data session, gives the relative masses of the protein(s) studied when referenced against a standard. see: O.Glatter & O.Kratky, (1982). Editors of "Small angle X-ray Scattering, Academic Press, New York. O.Kratky. (1963). X-ray small angle scattering with substances of biological interest in diluted solutions. Prog. Biophys. Chem., 13, 105-173. G.D.Wignall & F.S.Bates, (1987). The small-angle approximation of X-ray and neutron scatter from rigid rods of non-uniform cross section and finite length. J.Appl. Crystallog., 18, 452-460. If the structure is elongated, the mean radius of gyration of the cross-sectional structure R_XS and the mean cross sectional intensity at zero angle [I(Q).Q]_Q->0 is obtained from ln[I(Q).Q] = ln[l(Q).(Q)]_Q->0 - ((R_XS)^2Q^2)/2</xsd:documentation>
</xsd:annotation>
<xsd:complexType>
<xsd:simpleContent>
<xsd:extension base="xsd:decimal">
<xsd:attribute fixed="nanometres" name="units" type="xsd:string" use="optional"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
</xsd:element>
<xsd:element name="mean_guiner_radius" minOccurs="0" maxOccurs="1" nillable="true">
<xsd:annotation>
<xsd:documentation xml:lang="en">The mean radius of structural elongation of the sample. In a given solute-solvent contrast, the radius of gyration R_G is a measure of structural elongation if the internal inhomogeneity of scattering densities has no effect. Guiner analysis at low Q gives the R_G and the forward scattering at zero angle I(0). lnl(Q) = lnl(0) - R_G^2Q^2/3 where Q = 4(pi)sin(theta/lamda) 2theta = scattering angle lamda = wavelength The above expression is valid in a QR_G range for extended rod-like particles. The relative I(0)/c values ( where c = sample concentration) for sample measurements in a constant buffer for a single sample data session, gives the relative masses of the protein(s) studied when referenced against a standard. see: O.Glatter & O.Kratky, (1982). Editors of "Small angle X-ray Scattering, Academic Press, New York. O.Kratky. (1963). X-ray small angle scattering with substances of biological interest in diluted solutions. Prog. Biophys. Chem., 13, 105-173. G.D.Wignall & F.S.Bates, (1987). The small-angle approximation of X-ray and neutron scatter from rigid rods of non-uniform cross section and finite length. J.Appl. Crystallog., 18, 452-460. If the structure is elongated, the mean radius of gyration of the cross-sectional structure R_XS and the mean cross sectional intensity at zero angle [I(Q).Q]_Q->0 is obtained from ln[I(Q).Q] = ln[l(Q).(Q)]_Q->0 - ((R_XS)^2Q^2)/2</xsd:documentation>
</xsd:annotation>
<xsd:complexType>
<xsd:simpleContent>
<xsd:extension base="xsd:decimal">
<xsd:attribute fixed="nanometres" name="units" type="xsd:string" use="optional"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
</xsd:element>
<xsd:element name="mean_guiner_radius_esd" minOccurs="0" maxOccurs="1" nillable="true">
<xsd:annotation>
<xsd:documentation xml:lang="en">The estimated standard deviation for the mean radius of structural elongation of the sample. In a given solute-solvent contrast, the radius of gyration R_G is a measure of structural elongation if the internal inhomogeneity of scattering densities has no effect. Guiner analysis at low Q give the R_G and the forward scattering at zero angle I(0). lnl(Q) = lnl(0) - R_G^2Q^2/3 where Q = 4(pi)sin(theta/lamda) 2theta = scattering angle lamda = wavelength The above expression is valid in a QR_G range for extended rod-like particles. The relative I(0)/c values ( where c = sample concentration) for sample measurements in a constant buffer for a single sample data session, gives the relative masses of the protein(s) studied when referenced against a standard. see: O.Glatter & O.Kratky, (1982). Editors of "Small angle X-ray Scattering, Academic Press, New York. O.Kratky. (1963). X-ray small angle scattering with substances of biological interest in diluted solutions. Prog. Biophys. Chem., 13, 105-173. G.D.Wignall & F.S.Bates, (1987). The small-angle approximation of X-ray and neutron scatter from rigid rods of non-uniform cross section and finite length. J.Appl. Crystallog., 18, 452-460. If the structure is elongated, the mean radius of gyration of the cross-sectional structure R_XS and the mean cross sectional intensity at zero angle [I(Q).Q]_Q->0 is obtained from ln[I(Q).Q] = ln[l(Q).(Q)]_Q->0 - ((R_XS)^2Q^2)/2</xsd:documentation>
</xsd:annotation>
<xsd:complexType>
<xsd:simpleContent>
<xsd:extension base="xsd:decimal">
<xsd:attribute fixed="nanometres" name="units" type="xsd:string" use="optional"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
</xsd:element>
<xsd:element name="min_mean_cross_sectional_radii_gyration" minOccurs="0" maxOccurs="1" nillable="true">
<xsd:annotation>
<xsd:documentation xml:lang="en">The minimum mean radius of structural elongation of the sample. In a given solute-solvent contrast, the radius of gyration R_G is a measure of structural elongation if the internal inhomogeneity of scattering densities has no effect. Guiner analysis at low Q give the R_G and the forward scattering at zero angle I(0). lnl(Q) = lnl(0) - R_G^2Q^2/3 where Q = 4(pi)sin(theta/lamda) 2theta = scattering angle lamda = wavelength The above expression is valid in a QR_G range for extended rod-like particles. The relative I(0)/c values ( where c = sample concentration) for sample measurements in a constant buffer for a single sample data session, gives the relative masses of the protein(s) studied when referenced against a standard. see: O.Glatter & O.Kratky, (1982). Editors of "Small angle X-ray Scattering, Academic Press, New York. O.Kratky. (1963). X-ray small angle scattering with substances of biological interest in diluted solutions. Prog. Biophys. Chem., 13, 105-173. G.D.Wignall & F.S.Bates, (1987). The small-angle approximation of X-ray and neutron scatter from rigid rods of non-uniform cross section and finite length. J.Appl. Crystallog., 18, 452-460. If the structure is elongated, the mean radius of gyration of the cross-sectional structure R_XS and the mean cross sectional intensity at zero angle [I(Q).Q]_Q->0 is obtained from ln[I(Q).Q] = ln[l(Q).(Q)]_Q->0 - ((R_XS)^2Q^2)/2</xsd:documentation>
</xsd:annotation>
<xsd:complexType>
<xsd:simpleContent>
<xsd:extension base="xsd:decimal">
<xsd:attribute fixed="nanometres" name="units" type="xsd:string" use="optional"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
</xsd:element>
<xsd:element name="min_mean_cross_sectional_radii_gyration_esd" minOccurs="0" maxOccurs="1" nillable="true">
<xsd:annotation>
<xsd:documentation xml:lang="en">The estimated standard deviation for the minimum mean radius of structural elongation of the sample. In a given solute-solvent contrast, the radius of gyration R_G is a measure of structural elongation if the internal inhomogeneity of scattering densities has no effect. Guiner analysis at low Q give the R_G and the forward scattering at zero angle I(0). lnl(Q) = lnl(0) - R_G^2Q^2/3 where Q = 4(pi)sin(theta/lamda) 2theta = scattering angle lamda = wavelength The above expression is valid in a QR_G range for extended rod-like particles. The relative I(0)/c values ( where c = sample concentration) for sample measurements in a constant buffer for a single sample data session, gives the relative masses of the protein(s) studied when referenced against a standard. see: O.Glatter & O.Kratky, (1982). Editors of "Small angle X-ray Scattering, Academic Press, New York. O.Kratky. (1963). X-ray small angle scattering with substances of biological interest in diluted solutions. Prog. Biophys. Chem., 13, 105-173. G.D.Wignall & F.S.Bates, (1987). The small-angle approximation of X-ray and neutron scatter from rigid rods of non-uniform cross section and finite length. J.Appl. Crystallog., 18, 452-460. If the structure is elongated, the mean radius of gyration of the cross-sectional structure R_XS and the mean cross sectional intensity at zero angle [I(Q).Q]_Q->0 is obtained from ln[I(Q).Q] = ln[l(Q).(Q)]_Q->0 - ((R_XS)^2Q^2)/2</xsd:documentation>
</xsd:annotation>
<xsd:complexType>
<xsd:simpleContent>
<xsd:extension base="xsd:decimal">
<xsd:attribute fixed="nanometres" name="units" type="xsd:string" use="optional"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
</xsd:element>
<xsd:element name="num_time_frames" minOccurs="0" maxOccurs="1" nillable="true" type="xsd:integer">
<xsd:annotation>
<xsd:documentation xml:lang="en">The number of time frame solution scattering images used.</xsd:documentation>
</xsd:annotation>
</xsd:element>
<xsd:element name="protein_length" minOccurs="0" maxOccurs="1" nillable="true" type="xsd:string">
<xsd:annotation>
<xsd:documentation xml:lang="en">The length (or range) of the protein sample under study. If the solution structure is approximated as an elongated elliptical cyclinder the the length L is determined from, L = sqrt [12( (R_G)^2 - (R_XS)^2 ) ] The length should also be given by L = pi I(0) / [ I(Q).Q]_Q->0</xsd:documentation>
</xsd:annotation>
</xsd:element>
<xsd:element name="sample_pH" minOccurs="0" maxOccurs="1" nillable="true" type="xsd:decimal">
<xsd:annotation>
<xsd:documentation xml:lang="en">The pH value of the buffered sample.</xsd:documentation>
</xsd:annotation>
</xsd:element>
<xsd:element name="source_beamline" minOccurs="0" maxOccurs="1" nillable="true" type="xsd:string">
<xsd:annotation>
<xsd:documentation xml:lang="en">The beamline name used for the experiment</xsd:documentation>
</xsd:annotation>
</xsd:element>
<xsd:element name="source_beamline_instrument" minOccurs="0" maxOccurs="1" nillable="true" type="xsd:string">
<xsd:annotation>
<xsd:documentation xml:lang="en">The instrumentation used on the beamline</xsd:documentation>
</xsd:annotation>
</xsd:element>
<xsd:element name="source_class" minOccurs="0" maxOccurs="1" nillable="true" type="xsd:string">
<xsd:annotation>
<xsd:documentation xml:lang="en">The general class of the radiation source. neutron source synchrotron</xsd:documentation>
</xsd:annotation>
</xsd:element>
<xsd:element name="source_type" minOccurs="0" maxOccurs="1" nillable="true" type="xsd:string">
<xsd:annotation>
<xsd:documentation xml:lang="en">The make, model, name or beamline of the source of radiation.</xsd:documentation>
</xsd:annotation>
</xsd:element>
<xsd:element name="temperature" minOccurs="0" maxOccurs="1" nillable="true">
<xsd:annotation>
<xsd:documentation xml:lang="en">The temperature in kelvins at which the experiment was conducted</xsd:documentation>
</xsd:annotation>
<xsd:simpleType>
<xsd:restriction base="xsd:decimal">
<xsd:minInclusive value="0.0"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="type" minOccurs="1" maxOccurs="1">
<xsd:annotation>
<xsd:documentation xml:lang="en">The type of solution scattering experiment carried out</xsd:documentation>
</xsd:annotation>
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="x-ray"/>
<xsd:enumeration value="neutron"/>
<xsd:enumeration value="modelling"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:all>
<xsd:attribute name="entry_id" use="required" type="xsd:string">
<xsd:annotation>
<xsd:documentation xml:lang="en">This data item is a pointer to attribute id in category entry in the ENTRY category.</xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="id" use="required" type="xsd:string">
<xsd:annotation>
<xsd:documentation xml:lang="en">The value of attribute id in category pdbx_soln_scatter must uniquely identify the sample in the category PDBX_SOLN_SCATTER</xsd:documentation>
</xsd:annotation>
</xsd:attribute>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType> |