module

<h:div class="summary">A module in a calculation.</h:div>
<h:div class="description">
  <h:p>Many programs are based on discrete modules which produce chunks of output. There are also conceptual chunks such as initialisation, calculation and summary/final which often have finer submodules such as cycle, iteration, snapshot, etc. There is no controlled vocabulary but a typical structure is shown in the example. One of the challenges of CCML is to find communality between different programs and to use agreed abstractions for the modules.</h:p>
</h:div>
<h:div class="example" href="module1.xml"/>

Element Information

Model

anyCml | ANY element from ANY namespace OTHER than 'http://www.xml-cml.org/schema' | ANY element from LOCAL namespace 'No Namespace'
Children: anyCml

Attributes

QName Type Fixed Default Use Inheritable Annotation
convention namespaceRefType optional
<h:div class="summary">A reference to a convention.</h:div>
<h:div class="description">There is no controlled vocabulary for conventions, but the author must ensure that the semantics are openly available and that there are mechanisms for implementation. The convention is inherited by all the subelements, so that a convention for
  <h:tt>molecule</h:tt>would by default extend to its
  <h:tt>bond</h:tt>and
  <h:tt>atom</h:tt>children. This can be overwritten if necessary by an explicit
  <h:tt>convention</h:tt>.
  <h:p>It may be useful to create conventions with namespaces (e.g.
    <h:tt>iupac:name</h:tt>). Use of
    <h:tt>convention</h:tt>will normally require non-STMML semantics, and should be used with caution. We would expect that conventions prefixed with "ISO" would be useful, such as ISO8601 for dateTimes.</h:p>
  <h:p>There is no default, but the conventions of STMML or the related language (e.g. CML) will be assumed.</h:p>
</h:div>
<h:div class="example" id="ex" href="convGroup1.xml"/>
dictRef namespaceRefType optional
<h:div class="summary">A reference to a dictionary entry.</h:div>
<h:div class="description">Elements in data instances such as _scalar_ may have a
  <h:tt>dictRef</h:tt>attribute to point to an entry in a dictionary. To avoid excessive use of (mutable) filenames and URIs we recommend a namespace prefix, mapped to a namespace URI in the normal manner. In this case, of course, the namespace URI must point to a real XML doc containing _entry_ elements and validated against STMML Schema.
  <h:p>Where there is concern about the dictionary becoming separated from the doc the dictionary entries can be physically included as part of the data instance and the normal XPointer addressing mechanism can be used.</h:p>
  <h:p>This attribute can also be used on _dictionary_ elements to define the namespace prefix</h:p>
</h:div>
<h:div class="example" href="dictRefGroup1.xml"/>
id idType optional
<h:div class="summary">A unique ID for an element.</h:div>
<h:div class="description">Id is used for machine identification of elements and in general should not have application semantics. It is similar to the XML ID type as containing only alphanumerics, '_', ',' and '-' and and must start with an alphabetic character. Ids are case sensitive. Ids should be unique within local scope, thus all atoms within a molecule should have unique ids, but separated molecules within a doc (such as a published article) might have identical ids. Software should be able to search local scope (e.g. all atoms within a molecule). However this is under constant review.</h:div>
role xsd:string optional
<h:div class="summary">Role of the object.</h:div>
<h:div class="description">How the object functions or its position in the architecture. No controlled vocabulary.</h:div>
serial xsd:string optional
<h:div class="summary">Serial number or other id.</h:div>
<h:div class="summary">Currently only on module. Modules with the same _role_ attribute can be distinguished by _serial_. This is often an integer but other schemes may be used.</h:div>
title xsd:string optional
<h:div class="summary">A title on an element.</h:div>
<h:div class="description">No controlled value.</h:div>
<h:div class="example" href="title1.xml"/>
Wildcard: ANY attribute from ANY namespace OTHER than 'http://www.xml-cml.org/schema'

Source

<xsd:element name="module" id="el.module" substitutionGroup="anyCml">
  <xsd:annotation>
    <xsd:documentation>
      <h:div class="summary">A module in a calculation.</h:div>
      <h:div class="description">
        <h:p>Many programs are based on discrete modules which produce chunks of output. There are also conceptual chunks such as initialisation, calculation and summary/final which often have finer submodules such as cycle, iteration, snapshot, etc. There is no controlled vocabulary but a typical structure is shown in the example. One of the challenges of CCML is to find communality between different programs and to use agreed abstractions for the modules.</h:p>
      </h:div>
      <h:div class="example" href="module1.xml"/>
    </xsd:documentation>
  </xsd:annotation>
  <xsd:complexType>
    <xsd:choice minOccurs="0" maxOccurs="unbounded">
      <xsd:element ref="anyCml"/>
      <xsd:any namespace="##other" processContents="lax"/>
      <xsd:any namespace="##local" processContents="lax"/>
    </xsd:choice>
    <xsd:attributeGroup ref="serial"/>
    <xsd:attributeGroup ref="title"/>
    <xsd:attributeGroup ref="id"/>
    <xsd:attributeGroup ref="convention"/>
    <xsd:attributeGroup ref="dictRef"/>
    <xsd:attributeGroup ref="role">
      <xsd:annotation>
        <xsd:documentation>
          <h:div class="specific">The module can have a program-specific name through its title or dictRef (e.g. "MINIM", "l201") and a generic role ("dynamicsCalculation", "equilibration", etc.). In general role will be controlled by CCML.</h:div>
        </xsd:documentation>
      </xsd:annotation>
    </xsd:attributeGroup>
    <xsd:anyAttribute namespace="##other" processContents="lax"/>
  </xsd:complexType>
</xsd:element>

Sample